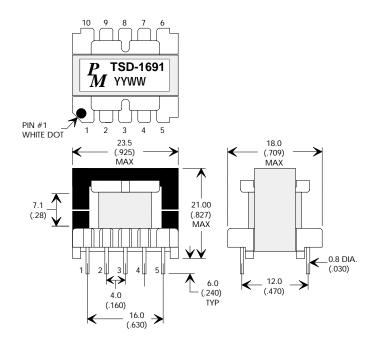

TABLE 1: ELECTRICAL SPECIFICATIONS AT 25 °C

PARAMETER	SP MIN.	EC LIMITS TYP.	MAX.	UNITS
PRIMARY INDUCTANCE (2-1) VOLTAGE = 0.250Vrms FREQUENCY = 100 KHZ	320	350	380	μНΥ
TURNS RATIO'S: SEC (10-6): PRI (2-1) BIAS (4-5): PRI (2-1)		1:7.8 1:4.33		<u>+</u> 4% <u>+</u> 4%
PRI LEAKAGE IND. (SEC SHORTED) VOLTAGE = 0.250Vrms FREQUENCY = 100 KHZ			12.0	μНΥ
HIPOT: PRIMARY TO SECONDARIES PRIMARY TO BIAS	3000 200			VRMS VRMS
APP CIRCUIT PARAMETERS: (1) AC LINE VOLTAGE 47/400 Hz OUTPUT VOLATGE OUTPUT CURRENT CONTINUOUS LINE REGULATION (85 TO 265Vac) LOAD REGULATION 10-100% RIPPLE	85 0.0 	8.6 0.20 0.20 50.0	265 1800 	Vac Vdc mA ±% ±% ±mV


FIGURE 1: SCHEMATIC DIAGRAM

NOTE1:

A) ALL MATERIALS MEET "UL", "CSA" & "IEC" REQUIRMENTS B) 130 °C INSULATION SYSTEM. C) VARNISH FINISHED ASSEMBLY.

FIGURE 2: PHYSICAL DIMENSIONS mm (INCHES)

REV.	DESCRIPTION OF CHANGES	BY
09/06/01	ORIGINAL RELEASE	PP

UNLESS OTHERWISE SPECIFIED DIMENSIONS ARE IN MM DIMENSIONAL TOLERANCES ARE: ANGLES ±0° 30'

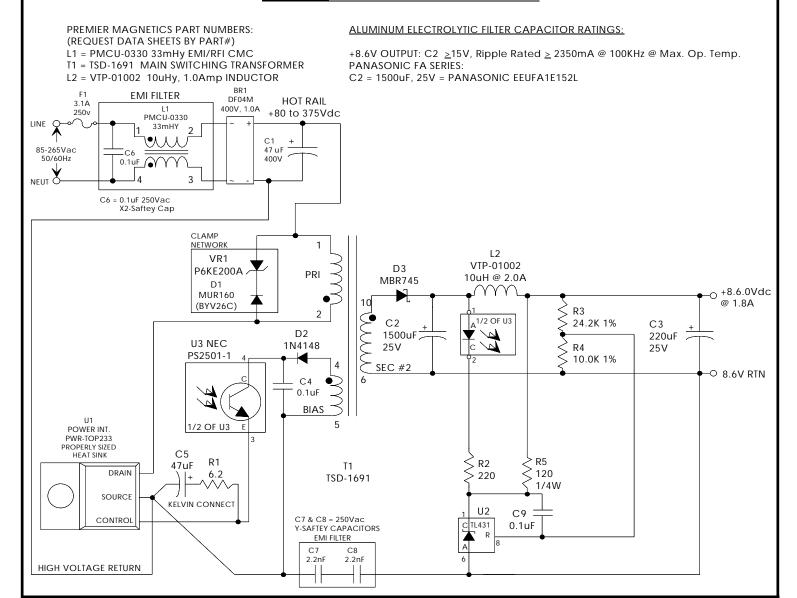
DECIMALS ANGLES

.X ± .25 ±0 ° 30'

.XX ± .15

DO NOT SCALE DRAWING

FLYBACK TRANSFORMER CONTROL DRAWING				
PREMIER P/N: TSD-1691	REVISION: 09/06/01			
DRAWN BY: PETER PHAM	REF: TOP 233 15.5W			
SCALE: NONE	SHEET: 1 OF 4			


APPLICATION NOTES

Premier Magnetic's TSD-1691 Switch Mode Transformer was designed for use with Power Integrations, Inc. TOP233 three terminal off-line PWM switching regulator in the Flyback Buck-Boost circuit configuration. This conversion topology can provide isolated multiple outputs with efficiencies up to 90%. Premier's TSD-1691 transformer has been optimized to provide maximum power throughput.

The TOPXXX series from Power Integrations, Inc. are self contained 130KHz switching regulators. This series contains all necessary functions for an off-line switched mode control DC power source. These switching regulators provide a very simple solution to off-line designs. The inductors and transformer used with the PWR-TOPXXX are critical to the performance of the circuit. They define the overall efficiency, output power and overall physical size.

Below is a universal input high precision 16 watt application circuit utilizing Power Integrations TOP233 switching regulator in the flyback buck-boost configuration. Proper thermal management of the TOP233, VR1 & D3 is required for reliable operation. As with any flyback circuit the output is not intended to be run under a no load condition. Careful evaluation by the end user is required and should be based on the actual application & it's associated environmental conditions. The component values listed are intended for reference purposes only.

FIGURE 3: TYPICAL APPLICATION CIRCUIT

UNLESS OTHERWISE SPECIFIED

DIMENSIONAL TOLERANCES ARE:

ANGLES

±0 ° 30'

DIMENSIONS ARE IN MM

DO NOT SCALE DRAWING

DECIMALS

.X <u>+</u> .25 .XX <u>+</u> .15

Premier

Magnetics Inc.

FLYBACK TRANSFORMER CONTROL DRAWING

REVISION: 09/06/01

REF: TOP 233 15.5W

SHEET: 2 OF 4

PREMIER P/N: TSD-1691

SCALE: NONE

DRAWN BY: PETER PHAM